Поиск статей:
ESI
Рейтинг:
ID: ESI846

Координаты в нашей жизни

 

Аннотация: поставлена и реализована цель, выяснить, где еще кроме математики применяется система координат. Для этого даем определение понятиям "координаты" и "система "координат", кратко излагая историю возникновения системы координат.

Ключевые слова: координаты, система координат, математика, жизнь, изображение, геометрия, метод. 

Координаты в нашей жизни. Слово "координата", мы часто слышим во время урока математики, решая задачи с координатами, работая с определенными точками, и т.д. Но, как она связана с жизнью? Где и как мы можем использовать координаты? В каких областях и сферах нашей жизни не обойтись без системы координат? Вот и для этого, сперва, начнем изучать координату и систему координат, историю координат, построение координат. 

С координатами в жизни мы сталкиваемся постоянно, можно сказать «на каждом шагу». Идея задавать положение точки на плоскости с помо­щью чисел зародилась в древности — прежде всего у астро­номов и географов при составлении звездных и географиче­ских карт, календаря.

Подробное изучение координатной плоскости необходимо. Ведь координаты - это тот же адрес. В повседневной жизни в речи взрослых мы иногда слышим такую фразу: “Оставьте мне свои координаты”. Это выражение означает, что собеседник должен оставить свой адрес или номер телефона, что и считается в этом случае координатами человека. Главное здесь в том, что по этим данным можно найти человека.

Именно в этом и состоит суть координат или, как обычно говорят, системы координат: это правило, по которому определяется положение того или иного объекта. Метод координат позволяет применять сред­ства алгебры и математического анализа при ре­шении геометрических задач. При работе с координатной плоскостью мы неоднократно можем менять расположение точек, размеры единичных отрезков, что требует высокого развития и логического мышления, и, следовательно, способствует его развитию.

В окружающем нас мире сущест­вует много явлений и объектов-прообразов, ко­торые можно использовать для составления зада­ний на метод координат. Если на уроках математики, каждой точке на числовой прямой ставилась в соответствии единственная координата (единственный адрес), то на уроках географии каждой точке на карте соответствуют уже два адреса, две координаты – долгота и широта.

Теперь, чтобы понять, где еще можно применить метод координат, нам нужно выяснить, где еще кроме математики применяется система координат. Но, сначала познакомимся с историей возникновения системы координат, необходимо научиться свободно, ориентироваться на координатной плоскости и на географической карте.

История возникновения системы координат

История возникновения координат и системы координат начинается очень давно, первоначально идея метода координат возникла ещё в древнем мире в связи с потребностями астрономии, географии, живописи. Древнегреческого ученого Анаксимандра Милетского(610-546 до н. э.) считают составителем первой географической карты. Он четко описывал широту и долготу места, используя прямоугольные проекции. Более чем за 100 лет до н.э. греческий ученый Гиппарх предложил опоясать на карте земной шар параллелями и меридианами и ввести теперь хорошо известные географические координаты: широту и долготу и обозначить их числами.

Первоначальное применение координат конечно связано с астрономией и географией, с потребностью определять положение светил на небе и определенных пунктов на поверхности Земли, при составлении календаря, звездных и географических карт. Следы применения идеи прямоугольных координат в виде квадратной сетки (палетки) изображены на стене одной из погребальных камер Древнего Египта. Основная заслуга в создании современного метода координат принадлежит французскому математику Рене Декарту.

Координатная плоскость в математике

       Каж­дый объ­ект имеет свой упо­ря­до­чен­ный адрес (ко­ор­ди­на­ты). Таким об­ра­зом, адрес или ко­ор­ди­на­ты – это чис­ло­вое или бук­вен­ное обо­зна­че­ние того места, где на­хо­дит­ся объ­ект.

       Ма­те­ма­ти­ка­ми была раз­ра­бо­та­на мо­дель, ко­то­рая, в част­но­сти, поз­во­ля­ет опи­сать любой зри­тель­ный зал (рас­по­ло­же­ние мест в зале). Такая мо­дель по­лу­чи­ла на­зва­ние ко­ор­ди­нат­ная плос­кость.

       Чтобы из обыч­ной плос­ко­сти по­лу­чить ко­ор­ди­нат­ную, необ­хо­ди­мо на­чер­тить две пер­пен­ди­ку­ляр­ные пря­мые, от­ме­чая стрел­ка­ми на­прав­ле­ния «впра­во» и «вверх». На пря­мые на­но­сят де­ле­ния, как на ли­ней­ку, при­чем точка пе­ре­се­че­ния пря­мых – это ну­ле­вая от­мет­ка для обеих шкал. Го­ри­зон­таль­ную пря­мую обо­зна­ча­ют Х и на­зы­ва­ют осью абс­цисс, вер­ти­каль­ную пря­мую обо­зна­ча­ют У и на­зы­ва­ют осью ор­ди­нат.

        Две пер­пен­ди­ку­ляр­ные оси Х и У с раз­мет­кой на­зы­ва­ют пря­мо­уголь­ной, или де­кар­то­вой, си­сте­мой ко­ор­ди­нат. На­зва­ние «де­кар­то­ва» про­ис­хо­дит от фа­ми­лии фран­цуз­ско­го фи­ло­со­фа и ма­те­ма­ти­ка Рене Де­кар­та, ко­то­рый ее при­ду­мал.

Для любой точки на ко­ор­ди­нат­ной плос­ко­сти можно ука­зать два числа (ко­ор­ди­на­ты). На ри­сун­ке по­ка­за­на точка на ко­ор­ди­нат­ной плос­ко­сти. Для по­лу­че­ния ко­ор­ди­нат этой точки необ­хо­ди­мо через точку про­ве­сти две пря­мые, па­рал­лель­ные ко­ор­ди­нат­ным осям (обо­зна­че­ны пунк­тир­ной ли­ни­ей). Пе­ре­се­че­ние одной из пря­мых с осью абс­цисс – это ко­ор­ди­на­та точки, пе­ре­се­че­ние дру­гой пря­мой с осью ор­ди­нат – это ко­ор­ди­на­та точки. Сна­ча­ла ука­зы­ва­ют ко­ор­ди­на­ту, потом. Точка имеет ко­ор­ди­на­ты. Ана­ло­гич­но на­хо­дим ко­ор­ди­на­ты точки, она имеет ко­ор­ди­на­ты.

        Координаты вокруг нас

Системы координат пронизывают всю практическую жизнь человека. В нашей речи вы не раз могли слышать такую фразу: «Оставьте мне ваши координаты». Что означает это выражение? Догадались?! Собеседник просит записать свой адрес или номер телефона. У каждого человека бывают ситуации, когда необходимо определить местонахождение: по билету найдите место в зрительном зале или в вагоне поезда

Координаты окружают нас повсюду:

  1. чтобы правильно занять свое место в кинотеатре нужно знать две координаты - ряд и место
  2. система географических координат (широта - параллели и долгота -меридианы)
  3. те, кто в детстве играл в морской бой, тоже помнят, что каждая клетка на игровом поле определялась двумя координатами - буквой и цифрой
  4. с помощью координатной сетки летчики, моряки определяют местоположение объектов;
  5. в биологии - построение схем молекул ДНК, построение диаграмм и графиков, прослеживающих эволюцию развития
  6. в экономике - разнообразные системы координат применяются для построение графика спроса и предложения, при графическом изображении разных зависимых величин.
  7. в химии – построение таблицы Менделеева (изменение показателей происходит в горизонтальной и вертикальной плоскости)- взаимное расположение молекул.
  8. при астрономических наблюдениях координатная сетка накладывается на небесный свод с Землей в центре.

Географические координаты

Так же, как и каждый дом имеет свой адрес (с названием улицы, города), также и каждое место на поверхности Земли можно записать в виде адреса, используя линию широты (параллель) и линию долготы (меридиан), проходящие через это место. Чтобы найти некоторый объект в городе, в большинстве случаев достаточно знать его адрес. Трудности возникают, если нужно объяснить, где находится, например, дачный участок, место в лесу. Универсальным средством указания местоположения служат географические координаты.

При попадании в аварийную ситуацию, человек первым делом должен уметь ориентироваться на местности. Иногда необходимо определить географические координаты своего местоположения, например, чтобы передать спасательной службе или для других целей.

Построение изображений на координатной плоскости

У древних греков существовала легенда о созвездиях Большой Медведицы и Малой Медведицы: «Всемогущий бог Зевс решил взять себе в жены прекрасную нимфу Калисто, одну из служанок богини Афродиты, вопреки желанию последней. Чтобы избавить Калисто от преследований богини, Зевс обратил Калисто в Большую Медведицу, а ее любимую собаку – в Малую Медведицу и взял их на небо».

Существует множество легенд и мифов о созвездиях. Фантазия древних греков поместила их на небо. Так появились созвездия Цефея, Андромеды, Персея и т.д. Знакомство с координатной плоскостью и вид звездного неба натолкнули на мысль, о переносе некоторых созвездий на координатную плоскость.

Создание «рисунков» в прямоугольной системе координат

На координатной плоскости интересно строить рисунки, используя построение графов по координатам. Нужно сначала нарисовать рисунок, а затем его перенести на координатную плоскость, но при этом плавные соединения должны быть в виде отрезков.

Заключение

Таким образом, в результате проведения исследования, были решены поставленные задачи. А именно, я изучил координатную плоскость и связанные с ней понятия. Кроме того, мне удалось определить возможность создания графического изображения на координатной плоскости, то есть создать рисунок по известным координатам, а также перенести изображения созвездий с астрономической карты на координатную плоскость.

В результате проведения исследования я доказал, что координатная плоскость используется не только в математике, а пронизывает всю практическую жизнь человека.

В настоящее время координатный метод широко применяется в повседневной жизни. Современные системы спутниковой навигации позволяют определять координаты объекта, а также следить и управлять объектами, в том числе и движущимися. Эта тема также представляет сегодня большой интерес и может стать темой новой исследовательской разработки в будущем.

2 893 0
Бақытгүл Сатканова, Учитель математики КГУ ОШ № 37 Бостандыкского района УО г.Алматы Ұлы Дала Ұстазы № 000501
Оставить комментарий

Подтвердите что вы не робот - [] *: